pH tailoring electrical and mechanical behavior of polymer-clay-nanotube aerogels

Aerogels are low density (<0.1 g cm-3), highly porous materials that are especially interesting for insulating applications. Combinations of clay and water-soluble polymers are commonly used to produce aerogels, but these materials are often mechanically weak. Single-walled carbon nanotubes (SWNT) were combined with clay and found to significantly improve mechanical behavior and impart electrical conductivity to these aerogels. Poly(acrylic acid) (PAA) as the matrix polymer provides a means of tailoring the electrical conductivity and mechanical behavior by altering the pH of the aqueous aerogel precursor suspensions prior to freeze drying. An aerogel, made from a pH 9 aqueous suspension containing 0.5 wt.-% PAA, 5 wt.-% clay, and 0.05 wt.-% SWNT, has a compressive modulus of 373 kPa. In the absence of nanotubes, this modulus is reduced to 43 kPa. Reducing suspension pH to 3, prior to freeze drying, also reduces modulus for these aerogels, but electrical conductivity is increased when nanotubes are present. It was found that bundled
nanotubes provide better reinforcement for these low-density composites, which may provide some new insight into the use of nanotubes in materials that will be exposed to compressive loading.

View the Source

Gawryla, MD;  Liu, L;  Grunlan, JC;  Schiraldi, DA; Macromol. Rapid Commun., 200930 (19), 1669-1673.

Published in Macromolecular Rapid Communications 2009 / Nanoparticle Stabilization